Search results for " Tubulin polymerization"

showing 5 items of 5 documents

Structural determinants of resveratrol for cell proliferation inhibition potency: experimental and docking studies of new analogs.

2010

International audience; Resveratrol is the subject of intense research because of the abundance of this compound in the human diet and as one of the most valuable natural chemopreventive agents. Further advances require new resveratrol analogs be used to identify the structural determinants of resveratrol for the inhibition potency of cell proliferation by comparing experimental and docking studies. Therefore, we synthesized new trans/(E)- and cis/(Z)-resveratrol - analogs not reported to date - by modifying the hydroxylation pattern of resveratrol and a double bond geometry. We included them in a larger panel of 14 molecules, including (Z)-3,5,4'-trimethoxystilbene, the most powerful molec…

Models MolecularMESH : HydroxidesMESH : DNAMESH: Cell CycleMESH: TubulinResveratrolHydroxylationchemistry.chemical_compound0302 clinical medicineTubulinMESH: StilbenesDrug DiscoveryStilbenesHydroxidesMESH : Cell ProliferationDocking studiesMESH : Colchicine0303 health sciencesCell CycleMESH: DNAStereoisomerismGeneral MedicineMESH : TubulinMESH: Hydroxides3. Good healthColon cancerBiochemistryMESH : Stereoisomerism030220 oncology & carcinogenesisMESH: Models MolecularMESH: Cell Line TumorStereochemistryMESH : Models MolecularStereoisomerismMESH : Stilbenes03 medical and health sciencesCell Line TumorMESH: Cell ProliferationMESH : Cell Cycle[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyBinding site[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyTubulin polymerization030304 developmental biologyCell ProliferationPharmacologyCombretastatinBinding SitesMESH: HumansCell growthMESH : Cell Line TumorOrganic ChemistryMESH : HumansDNAMESH: StereoisomerismMESH: ColchicinechemistryPolymethoxy-stilbenesMESH: Binding SitesDocking (molecular)Cell cultureResveratrolResveratrol; Polymethoxy-stilbenes; Tubulin polymerization; Colon cancer; Docking studiesColchicineMESH : Binding Sites
researchProduct

Pyrrolo[2',3':3,4]cyclohepta[1,2-d][1,2]oxazoles, a New Class of Antimitotic Agents Active against Multiple Malignant Cell Types

2020

A new class of pyrrolo[2',3':3,4]cyclohepta[1,2-d][1,2]oxazoles was synthesized for the treatment of hyperproliferative pathologies, including neoplasms. The new compounds were screened in the 60 human cancer cell lines of the NCI drug screen and showed potent activity with GI50 values reaching the nanomolar level, with mean graph midpoints of 0.08-0.41 μM. All compounds were further tested on six lymphoma cell lines, and eight showed potent growth inhibitory effects with IC50 values lower than 500 nM. Mechanism of action studies showed the ability of the new [1,2]oxazoles to arrest cells in the G2/M phase in a concentration dependent manner and to induce apoptosis through the mitochondrial…

CellsMitosisAntineoplastic AgentsApoptosisAntimitotic AgentsDrug Screening Assays[12]oxazoles antimitotic agents lymphoma tubulin polymerization inhibitorsDose-Response RelationshipStructure-Activity Relationshipchemistry.chemical_compoundModelsDrug DiscoverymedicineHumansStructure–activity relationshipColchicineOxazolesAntimitotic Agents; Antineoplastic Agents; Apoptosis; Cell Proliferation; Cells Cultured; Dose-Response Relationship Drug; Drug Screening Assays Antitumor; G2 Phase Cell Cycle Checkpoints; HeLa Cells; Humans; Mitosis; Models Molecular; Molecular Structure; Oxazoles; Structure-Activity RelationshipCell Proliferationchemistry.chemical_classificationReactive oxygen speciesCulturedMolecular StructureChemistryMolecularDepolarizationAntitumorMolecular biologyG2 Phase Cell Cycle CheckpointsMechanism of actionApoptosisCell cultureMolecular MedicineAntimitotic AgentDrugmedicine.symptomHeLa Cells
researchProduct

Synthesis of a new class of pyrrolo[3,4-h]quinazolines with antimitotic activity

2014

Abstract A new series of pyrrolo[3,4- h ]quinazolines was conveniently prepared with a broad substitution pattern. A large number of derivatives was obtained and the cellular cytotoxicity was evaluated in vitro against 5 different human tumor cell lines with GI 50 values reaching the low micromolar level (1.3–19.8 μM). These compounds were able to induce cell death mainly by apoptosis through a mitochondrial dependent pathway. Selected compounds showed antimitotic activity and a reduction of tubulin polymerization in a concentration-dependent manner. Moreover, they showed anti-angiogenic properties since reduced in vitro endothelial cell migration and disrupted HUVEC capillary-like tube net…

Programmed cell deathMitosisAntiproliferative activityCell Line TumorDrug DiscoveryHuman Umbilical Vein Endothelial CellsPiHumansTubulin polymerizationPyrrolesPyrrolo[3Cell-mediated cytotoxicityPyrrolo[34-h]quinazolines Antiproliferative activity Antimitotic activity Tubulin polymerization Vascular disrupting activityTubulin polymerizationVascular disrupting activityPharmacologyMatrigelCell Death4-h]quinazolinesChemistryAntimitotic activityOrganic ChemistryGeneral MedicineSettore CHIM/08 - Chimica FarmaceuticaMitochondriaEndothelial stem cellBiochemistryCell cultureApoptosisPyrrolo[3; 4-h]quinazolines; Antiproliferative activity; Antimitotic activity; Tubulin polymerization; Vascular disrupting activityQuinazolinesLysosomes
researchProduct

Insight on [1,3]thiazolo[4,5-e]isoindoles as tubulin polymerization inhibitors

2021

A series of [1,3]thiazolo[4,5-e]isoindoles has been synthesized through a versatile and high yielding multistep sequence. Evaluation of the antiproliferative activity of the new compounds on the full NCI human tumor cell line panel highlighted several compounds that are able to inhibit tumor cell proliferation at micromolar-submicromolar concentrations. The most active derivative 11g was found to cause cell cycle arrest at the G2/M phase and induce apoptosis in HeLa cells, following the mitochondrial pathway, making it a lead compound for the discovery of new antimitotic drugs.

Models MolecularCell cycle checkpointIsoindoles1ApoptosisIsoindoles01 natural sciencesPolymerizationTubulin Polymerization InhibitorsCell cycle arrestHeLaStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundTubulinDrug DiscoveryHumansTubulin polymerization inhibitors030304 developmental biologyPharmacology0303 health sciencesDose-Response Relationship DrugMolecular Structurebiology010405 organic chemistry3]thiazolo[4Organic ChemistryGeneral Medicinebiology.organism_classificationTubulin Modulators0104 chemical sciencesBiochemistrychemistryCell cultureApoptosis5-e]isoindoles13]thiazolo[45-e]isoindoles13]thiazolo[45-e]isoindoles; Apoptosis; Cell cycle arrest; Tubulin polymerization inhibitorsLead compoundDerivative (chemistry)HeLa CellsEuropean Journal of Medicinal Chemistry
researchProduct

Synthesis of novel antimitotic agents based on 2-amino-3-aroyl-5-(hetero)arylethynyl thiophene derivatives

2011

Microtubules are dynamic structures that play a crucial role in cellular division and are recognized as an important target for cancer therapy. In search of new compounds with strong antiproliferative activity and simple molecular structure, a new series of 2-amino-3-(3',4',5'-trimethoxybenzoyl)-5-(hetero)aryl ethynyl thiophene derivatives was prepared by the Sonogashira coupling reaction of the corresponding 5-bromothiophenes with several (hetero)aryl acetylenes. When these compounds were analyzed in vitro for their inhibition of cell proliferation, the 2- and 3-thiophenyl acetylene derivatives were the most powerful compounds, both of which exerted cytostatic effects at submicromolar conc…

KetoneCell divisionStereochemistryClinical BiochemistryPharmaceutical ScienceSonogashira couplingUterine Cervical NeoplasmsEthermacromolecular substancesThiophenesAntimitotic AgentsBiochemistryChemical synthesisArticlechemistry.chemical_compoundMiceStructure-Activity RelationshipThiopheneCell Line TumorDrug DiscoveryThiopheneAnimalsHumansInhibition of tumor cell growthMolecular BiologyCell Proliferationchemistry.chemical_classificationLeukemiaMolecular StructureInhibition of tubulin polymerizationCell growthArylOrganic ChemistryAntiproliferative agentsAntiproliferative agents; Inhibition of tubulin polymerization; Inhibition of tumor cell growth; Thiophene;chemistryMolecular MedicineFemale
researchProduct